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We experimentally show that computing with attractors leads to fast adaptive 
behavior in which dynamical associations can be made between different inputs 
which initially produce sharply distinct outputs. We do so by first defining a set 
of simple local procedures which allow a computing array to change its state in 
time so as to produce classical Pavlovian conditioning. We then examine the 
dynamics of coalescence and dissociation of attractors with a number of quan- 
titative experiments. We also show how such arrays exhibit generalization and 
differentiation of inputs in their behavior. 

KEY W O R D S :  Collective computation. 

What is the range of behavioral functions of the brain that can be 
reproduced by the collective behavior of arrays of simple, locally connec- 
ted, computing elements? Moreover, to what extent can this repertoire be 
encompassed by the dynamics of a single architecture? Examples of these 
possibilities include self-organization in the presence of time vaying inputs, 
their recognition even when distorted, and the ability to establish flexible 
asociations between them. Answers to these questions (1 3) are important in 
understanding the emergence of complex behavior out of a collection of 
simple units, in determining to what extent VLSI structures can be made to 
behave in adaptive fashion, and more generally, in elucidating the global 
dynamics of systems made up of elementary computational cells. 

Our approach to these issues considers arrays of simple local units 
that exhibit some interesting property. For various values of the array 
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parameters, we then quantitatively examine the emergence of global com- 
putational behavior as a function of time. Within this context, we have 
recently shown that there is a class of architectures that can be made to 
compute in a distributed, self-repairing fashion, by exploiting the existence 
of attractors in their phase s p a c e s .  (4) Such a mechanism leads to computing 
structures which are able to reliably learn several inputs and to recognize 
them even when slightly distorted. 

The architecture that we have now investigated consists of a rec- 
tangular array of simple processors each of which operates on integer data 
received locally from its neighbors (see Fig. la). Overall input and output 
to the machine takes place only along the edges. Each processor has an 
internal state or bias, represented by an integer B, which can only take on 

(a/ 

(b) 

Fig. 1, (a) Schematic diagram of the arrays used in these experiments. (b) Local rules 
obeyed by each cell. The output from each unit is sent to the lower left and right units. 
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a small set of values. The unit determines it local output based on its inputs 
and its internal state. Figure lb shows how such outputs are computed. At 
each time step, every element receives data values from the units to its 
upper left and right, I L and IR, respectively, and computes its output O in 
the following way: 

O = max(Smin, min(S . . . .  S(IL, IR)" (l/R] + L/c[) + B)) (1) 

where for even rows, if a is zero s(a, b) is the sign of b, otherwise the sign of 
a; and for odd rows the roles of a and b are reversed. Smi . and Smax con- 
strain the data to lie in a specific interval, thereby creating a nonlinear 
computation. Essentially, Eq. (1) amounts to summing the magnitudes of 
inputs to a given cell, choosing an appropiate sign, adding the bias B, and 
restricting the result to the proper range, [Smin, Smax], Those output values 
equal to the extrema of this range are said to be saturated 

This rule leads in turn to a contraction mechanism whereby many 
inputs are mapped into the same output. In the language of dynamical 
systems, this corresponds to the appearance of a fixed point in the phase 
space of the system. Furthermore, the contraction of volumes in phase 
space makes these fixed points attractive in the sense that perturbations 
quickly relax back to the original values. The set of inputs which map into 
a given output defines the basin of attraction for that output, as illustrated 
in Fig. 2a. 

Since there are many such basins of attraction, a natural question con- 
cerns the possibility of changing them at will with local rules. In other 
words, one is interested in dynamically modifying the basins of attraction 
in order to include or exclude a particular set of inputs. Figures 2a and 2b 
show schematically how this adaptive mechanism would work. These new 
processes of coalescence and dissociation of attractors lead to results 
analogous to Pavlovian conditioned reflexes. (5,6~ They are achieved by 
changing the internal state of each of the computing elements using adap- 
tive local rules which mimic the global expansion or contraction process 
one is interested in achieving. That  such local computation leads to this 
global behavior is indeed surprising in view of the nonlinearity of the 
system. 

We now report experimental results that show how this new paradigm 
leads to fast adaptive behavior in which dynamical associations are made 
between different inputs which initially produce sharply distinct outputs. 
We do so by first defining a set of simple local procedures which allow the 
array to change its state in time so as to produce classical Pavlovian con- 
ditioning. We then examine the dynamics of coalescence and dissociation of 
attractors with a number of quantitative experiments, and also measure 
how clouds of nearby inputs are affected by these process. 
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Specifically, consider an array of the type discussed above and two 
particular inputs which produce outputs. To make the two inputs produce 
the same output, one sends them through the array following an instruc- 
tion which sets the adaptive procedure in the local units to the following 
contracting rule: 

if at least one of Onew and Oprev is not saturated and 

One w " Oprev < 0 
then change B by 1, with the sign of the change given by 

the sign of the output with largest magnitude (or by the 
sign of Onew when both have the same magnitude) 

else B is unchanged 

(a) 

(b) 

Fig. 2. (a) Basins of attraction for three sets of inputs, {A}, {B}, and {C} mapping into 
three different outputs. (b) The attractors after coalescence of sets {A }, and {B} into a new 
basin of attraction {N}. 
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where Onew and Oprev denote the current and previous outputs of the unit, 
respectively. As can be seen, this rule simply changes the internal state B by 
_+1. Furthermore, to speed convergence one can choose to update the 
value of O,~w immediately after changing B. 

Likewise, one could start with inputs which initially map into the same 
output and separate them with the following expanding rule: 

if at least one of Onew and Oprev is not saturated and 
One w " Oprev > 0 

then change B by 1, with the sign of the change opposite of 
that of either output 

else B is unchanged 

Table I shows the results of an experiment performed on a ten rows by 
six columns array of processors obeying the above local rules. They were 
obtained by sending the inputs through the array which has 64 attractors, 
out of which three are made to coalesce. At each pass the outputs were 
compared, and if their difference was not zero, the inputs were sent through 
the array again. The experiment ended as soon as exact coincidence 
between outputs was detected. The table also shows the results of an 
experiment whereby inputs which were initially in the same basin of attrac- 
tion were separated. 

Having shown that such associative behavior can be easily accom- 
plished, one can investigate the behavior of nearby inputs during the merg- 

Table I. Results of Two Separate Experiments on an A r r a y  w i t h  Ten R o w s  
and Six Columns S t a r t i n g  w i t h  al l  of the Bias Values Set to Zero  a 

Input Original output Final output 

Coalescence of inputs 
3 3 3 3 3 3 + + + + + +  + + + + + +  

- 2  2 - 2 - 2  2 - 2  + + + + + +  
2 - 3  3 - 2  1 - 1  + - + - + -  + + + + + +  

Dissociation of inputs 
3 4 t 4 2 2 + + + + + +  
2 2 2 5 5 5 + + + + + +  - - - + + +  
4 5 5 3 4 4 + + + + + +  + + +  - -  

a It required four iterations through the array to produce the coalescence shown here, and 
three iterations to give the dissociation. Reversing the procedure then required 13 iterations 
to reexpand the coalesced inputs and five to recontract the dissociated ones. For these 
experiments Sma~ = --Stain = 15, wheras - 10 ~< B ~< 10. 
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ing and dissociation of the attractors. This amounts to determining how 
the size and shape of the basins of attraction change when conditioned 
reflexes are obtained in an adaptive structure. This is important in 
establishing to what extent this array is capable of both input 
generalizations and its complement, differentiation. (6) 

To answer these questions, we used the following two techniques 
before and after associating given inputs: (1) determining the distribution 
of sizes of basins of attraction by sending random inputs through the array 
and counting how many produced each observed output, and (2) determin- 
ing the size of the basins of attraction by taking each input and measuring 
the fraction of nearby inputs that are in the same basin of attraction as a 
function of distance from the original input. Since the set of inputs form an 
integer lattice, we measured distances between inputs using a street map 
metric which sets the distance between two points to be the sum of the 
magnitudes of the differences in each component. As shown in Fig. 3, the 
process of association produces a broad aggregation of clouds of inputs 
surrounding the original inputs. This implies that when associating two 
specific behavioral responses, the same output can be elicited by operating 
with inputs which are close to the original ones. We also found similar 
results in the opposite limit of trying to dissociate inputs which originally 
produced the same outputs. 

Furthermore, although the basins of attraction are initially of equal 
size, after adaptation the attractors for the learned inputs grew at the 
expense of others. Specifically, for the case considered here (an array with 
six columns and ten rows), there are 26 attractors, and each one has 1/64th 
or 1.6% of the inputs in its basin. After the coalescence experiment 
described above, the attractor containing the three contracted inputs 
included almost 4% of the inputs in its basin of attraction. Similarly, in the 
other experiment in which the three inputs were separated, the final basins 
of atraction contained 4%, 2%, and 2% of the inputs, respectively. 

An interesting consequence of this investigation is the correlation 
between the ability to quickly associate a set of given inputs and the initial 
state of the array. Generally, merging two basins of attraction when 
starting with all cells having the same state (i.e., a uniform state) was much 
simpler (i.e., took fewer passes through the array) than starting with an 
array which had already adapted to a set of inputs. This became par- 
ticularly evident in experiments where we started with two separate inputs 
and a uniform array, associated them together and then tried to separate 
them. The time required to separate them was much longer than the time 
that it took to merge them into the same basin. Similar results held when 
these operations were tried in the opposite order. This effect might provide 
a concrete mechanism whereby selection from a highly degenerate con- 
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Fig. 3. Fraction of samples that are in each basin of attraction, as a function of the distance 
between the sample and the learned input. (a) original array (b) after coalescence. 

figuration leads to states which are harder to unravel at later times, as has 
been postulated in the group-selection theory. (7) 

Having succesfully tested the ability of such structures to either 
associate or dissociate inputs, we then proceeded to group many inputs 
into many  different basins of attraction. This was done by sending both 
instructions for contraction and expansion in the form of input waves 
which set the array to successively operate according to the expansion and 
contraction rules given above. 

One of the limitations of this strategy appears when trying to 
simultaneously contract and expand groups of nearby inputs. If inputs 
Aland A 2 are close together, and so are B1 and B2, then an example of this 
procedure is to at tempt to contract A1 and Blwhile simultaneously 
expanding A2and B 2. In this case, a conflicting set of succesive instructions 
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leads to a frustration effect whereby the outputs never converge to the 
desired classes. An additional frustration can appear  when the two inputs 
to be contracted have the same magnitude and opposite sign. We should 
point out however, that a different strategy concerning the sequence of 
instructions could in principle achieve the desired results. 

For  instance, one can adopt  a less conservative adaptive rule and 
change the bias values by larger increments. This tends to coalesce or 
expand individual pairs more rapidly, but also increases the risk of undoing 
previous instructions. As a specific example, we found that a slight 
modification of the contraction rule given above removed most of the 
frustrations associated with equal but opposite inputs. This modified rule is 

if at least one of Onew and Oprev is not saturated and 
Onew' Oprov < 0 

then change B by 1, with the sign of the change given 
by the sign of the output with largest magnitude (or 
by + 1 for odd rows and - 1 for even rows) 

else B is unchanged 

and was used in the statistical experiment described below. 
To assess the relevance of this methodology for large-scale 

applications, such as required for speech or vision processing, we examined 
the behavior of the array throughout the input space. This was done by 
attempting to simultaneously coalesce two sets, each containing two inputs, 
into two separate outputs. To determine the behavior throughout the set of 
inputs, this process was repeated 1000 times with randomly selected pairs. 
The results were that 80% of the inputs quickly produced the desired out- 
puts, with only minor modifications to the other 62 attractors. 

The success of these experiments opens the possibility o f  using these 
computing structures for problems in which recognition of fuzzy inputs 
should be coupled to a flexible way of programming desired groupings of 
inputs into specific outputs. This is particularly useful in vision and speech 
recognition, where a preliminary encoding of either patterns 2 or voice (9) 
would produce sets of inputs which one would then want to put in the 
same equivalence class. 3 At a more fundamental level, these results provide 
an experimental basis for the development of a theory of dynamics of dis- 
sipative computing structures. (11) 

2 As, for example, using textous in preattentive vision (see Ref. 8). 
3 This should be distinguished from both perceptron-like models (Ref. 10a) and statistical 

computational mechanisms (Ref. 10b). Our array, unlike perceptrons, uses nonlinear rules 
which allow a much richer behavior such as the associations we have discussed here. 
Statistical machines, on the other hand, may never converge to a unique equilibrium, and if 
they do it may take a long time. 
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